

SphinX Events Catalogue: Progress report

Magdalena Gryciuk, Marek Siarkowski, Piotr Podgórski, Szymon Gburek, Janusz Sylwester

Space Research Centre, PAS, Solar Physics Division

Abstract

Solar Photometer in X-rays (SphinX) was designed to measure soft X-ray emission from the Sun as a star in the energy range between 1.2 keV and 15 keV. The instrument operated aboard the CORONAS-Photon satellite from February to November 2009, during the phase of unprecedently low minimum of solar activity. SphinX as a high sensitive spectrophotometer was able to reliably measure solar Xray emission at levels even much below GOES threshold. Thanks to this, SphinX observations provide a large database of weak flare and X-ray brightennings. Our goal is preparation of the catalogue of Xray flare events based on interpretation of SphinX lightcurves. The catalogue will contain set of characteristics for every flare, microflare or brightenning which will be a subject of further statistical analysis. Important problems of background subtraction and deconvolution of complicated lightcurve into components will be described.

SphinX Events Catalogue: Progress report

OUTLINE

- Sphinx instrument
- Sphinx observations
- Elementary SXR lightcurve flares profile
- Flares characteristics
- Flare fitting routine
- Examples of fitting
- Future plans

SphinX: Solar Photometer in X-ray

BASIC INFORMATIONS		
LAUNCHED:	30 January 2009 at 13:30 UT from Plesetsk Cosmodrom	
SATELLITE:	CORONAS – Photon	
ORBITS PARAMETERS:	orbit duration- 96min altitude - 550km near polar orbit	
MASS:	3.7 kg	
POWER:	10 W	
ENERGY RANGE:	1.2 keV - 15 keV in 256 energy bins	
LIFESPAN OF THE MISSION:	20 February - 29 November 2009	

SphinX Mission Observations, 2009

SphinX Mission Observations – Flares & Brightenings

Progress on EUV & X-ray Spectroscopy and Imaging WROCŁAW, 20-22 November

SphinX Mission Observations

SPHINX OPERATION MODES:

Basic mode:

- provides only lightcurves in 4 energy bands

Spectral mode:

- provides spectra (256 channels)

Sequence mode:

 provides full data – sequence of detector events described with their energies (in 256 bins) and arrival times

Two Spectral Channels – High & Low

SphinX lightcurves in two channels:

Start time: 2009/06/04 08:23:19.608

12:00

14:00

16:00

18:00

20:00

22:00

00:00

Jun 04

[c/s]

0 10²

keV

Low (red curve): countrates of photons within energy range 1.16 - 1.5 keV. High (blue curve): countrates of photons within energy range 1.5 - 15.07 keV.

<

65658 22323

Progress on EUV & X-ray Spectroscopy and Imaging WROCŁAW, 20-22 November

04:00

06:00

Elementary Soft X-ray Flare Profile

Flares Characteristics

Flare fitting routine (FlareFit v1.0)

Scheme of FlareFit routine

FlareFit routine – fitting algorithm

Existing Fitting Tools in IDL

General non-linear:

- CURVEFIT Bevington algorithm (vectorized)
- LMFIT Numerical recipes (not vectorized)

Specialized:

- LINFIT linear (y = ax + b)
- POLY_FIT polynomial
- SVDFIT linear combinations
- GAUSSFIT peak fitting

Craig Markwardt University of Maryland and NASA's Goddard Spaceflight Center <u>http://purl.com/net/mpfit</u> MPFIT fitting engine based on MINPACK-1 (Moré and collaborators; http://netlib.org/minpack/)

Perform Levenberg-Marquardt least-squares fit to IDL function

MPFIT routine

Small Events observed by SphinX- fitting examples

No	Data (Day and	~Time
-	Month 2009)	maximum
1	19 April	02:10
2	10 May	00:30
3	17 May	06:30
4	26 May	10:45
5	31 May	10:30
6	04 June	18:00
7	20 June	20:00
8	01 July	22:45
9	07 July	10:10
10	18 July	02:00
11	25 August	13:30
12	07 September	22:00
13	25 September	20:30
14	27 September	22:20
15	05 October	03:15
16	11 October	01:45
17	18 October	16:40
18	19 November	03:50

Small Events observed by SphinX - fitting examples

Small Events observed by SphinX - fitting examples

Time _{start}	Time _{max}	Time _{end}
01:41:25	01:51:52	02:42:43

SphinX Mission Observations – Blended flares

Progress on EUV & X-ray Spectroscopy and Imaging WROCŁAW, 20-22 November

SphinX Events Catalogue

CONTENTS:

SphinX flaring events catalogue: FLARE ID, Time_{start}, Time_{max}, Time_{end}, Flare magnitude

FUTURE PLANS: Flare finding/detecting algorithm Extended catalogue (Temperatures, Fluxes, ...) Analysis of flare flux observation in 1-8 Å wavelength range Flare characteristics statistical analysis

The End